# Material data sheet **Steel grade**



# 8CrMnMo15-4\*

# **General Information**

8303, also known as, Imacro NIT has been designed for nitriding. After nitriding, it gives a similar hardness distribution as aluminium alloyed nitriding steels, and also has a much better machinability.

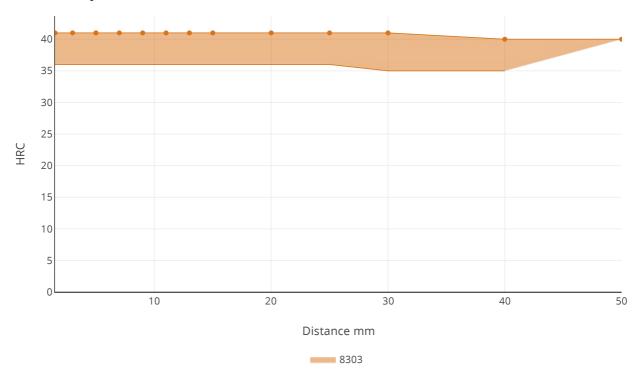
# Similar designations

8CrMoV16-5

# **Chemical composition**

| Variant | Cast | Di   | Weldability             |     | C%   | Si % | Р%    | s%    | Cr%  | Mo % | Cu%  |
|---------|------|------|-------------------------|-----|------|------|-------|-------|------|------|------|
| 8303    | СС   | 6.03 | CEV 1.15 <sub>max</sub> | Min | 0.04 | 0.10 | -     | 0.010 | 3.70 | 0.40 | -    |
|         |      |      | Pcm 0.38 <sub>max</sub> | Max | 0.12 | 0.40 | 0.025 | 0.035 | 4.30 | 0.60 | 0.25 |

# **Mechanical Properties**


| Variant | <ul><li>Condition</li></ul> | Format       | Dimension<br>[mm] | Yield strength<br>min [MPa] | Tensile<br>strength [MPa] | Elongation<br>A <sub>5</sub> [%] | Reduction of area Z <sub>min</sub> [%] | Hardness | Impact (ISO-V)<br>strength <sub>min</sub> |
|---------|-----------------------------|--------------|-------------------|-----------------------------|---------------------------|----------------------------------|----------------------------------------|----------|-------------------------------------------|
| 8303    | +AR                         | Round<br>bar | 25 < 140          | -                           | -                         | -                                | -                                      | < 320 HB | -                                         |
|         | +A                          | Round<br>bar | 25 < 140          | -                           | -                         | -                                | -                                      | < 150 HB | -                                         |
|         | +QT                         | Round<br>bar | 25 < 120          | 700                         | 800-1000                  | 14                               | 55                                     | < 290 HB | -40 °C 35 J<br>(long)                     |

 $Rp_{0.2} * R_{eh}, ** R_{el}$ 

# **Transformation temperatures**

|     | Temperature °C |  |  |
|-----|----------------|--|--|
| MS  | 376            |  |  |
| AC1 | 769            |  |  |
| AC3 | 861            |  |  |

# Hardenability



#### SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do. Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the  $CO_2$  emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

| Steel works | Hofors | Smedjebacken | Imatra |  |
|-------------|--------|--------------|--------|--|
| CO2e/kg     | 120    | 62           | 76     |  |

To get the full picture of our products environmental impact we have to look at all of our CO<sub>2</sub> emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

| Steel Grade         | Format       | Gondition |     | Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated) |
|---------------------|--------------|-----------|-----|---------------------------------------------------------------------------------------------------|
| Imacro NIT,<br>8303 | Round<br>bar | +AR       | 583 | 299                                                                                               |
| Imacro NIT,<br>8303 | Round<br>bar | +QT       | 848 | 359                                                                                               |

As of 1 January 2022 we use carbon offset for all our scope 1-2 emissions, so in practice the climate compensated data is the same as the full Scope 3 level.

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

# Other properties (typical values)

| Youngs module (GPa)           | Poisson's ratio (-)                      | Shear module (GPa)                               | Density (kg/m3)                                 |  |
|-------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------|--|
| 210                           | 0.3                                      | 80                                               | 7800                                            |  |
| Average CTE 20-300°C (μm/m°K) | Specific heat capacity 50/100°C (J/kg°K) | Thermal conductivity Ambient temperature (W/m°K) | Electrical resistivityAmbient temperature (μΩm) |  |
| 12                            | 460 - 480                                | 40 - 45                                          | 0.20 - 0.25                                     |  |

#### Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

### Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.