

66SiMnCrMo6-6-4* All

General Information

Ovako 677L & 677Q is an air-hardening bearing steel with high mechanical strength and fatigue properties. By using gas cooling or air-hardening it is possible to reduce the amount of distortion. Additionally the use of quenching medias such as oil and salt can be avoided, which improves both safety and environment.

- Through hardenability corresponding to a bar with approx. Ø40 mm (cooling in still air)
- · Can be induction or flame hardened
- Good machinability in soft annealed condition
- · Machinable in hardened condition using hard-turning techniques
- Good dimensional stability
- · Corresponds to BQ and IQ specifications
- Delivered in soft annealed condition

Ovako 677L - BQ (Bearing Quality) - Standard

Ovako 677Q - IQ (Isotropic Quality) - Due to a reduced sulphide inclusion content and a finer oxide inclusion distribution, Ovako 677Q is a steel with isotropic properties with excellent fatigue strength in both transverse and longitudinal directions.

IQ-Steel®

IQ-Steel® is an isotropic quality ultra clean steel optimized for high fatigue strength under multi axial loading.

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

Similar designations

66SiMnCrMo6-6-4

Chemical composition

Variant	Cast		С %	Si %	Mn %	P %	S %	Cr %	Ni %	Мо %
677Q	IC	Min	0.63	1.40	1.35	-	-	1.00	-	0.23
		Max	0.70	1.60	1.55	0.025	0.001	1.20	0.25	0.27
677L	IC	Min	0.65	1.45	1.35	-	0.004	1.00	-	0.23
6//L		Max	0.70	1.55	1.55	0.025	0.015	1.10	0.25	0.27

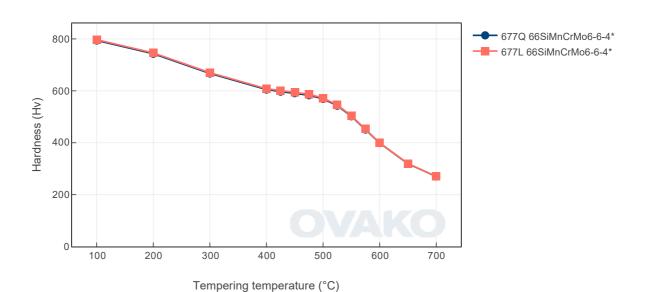
Mechanical Properties

Variant	Condition	Format	Yield strength min [MPa]	Tensile strength [MPa]	Elongation A ₅ [%]	Hardness
677Q	+SA	Round bar	-	-	-	220 HB typical
077Q	+Q	Round bar	1700	2300 typical	2	61 HRC typical
677L	+SA	Round bar	-	-	-	220 HB typical
6//L	+Q	Round bar	1700	2300 typical	2	61 HRC typical

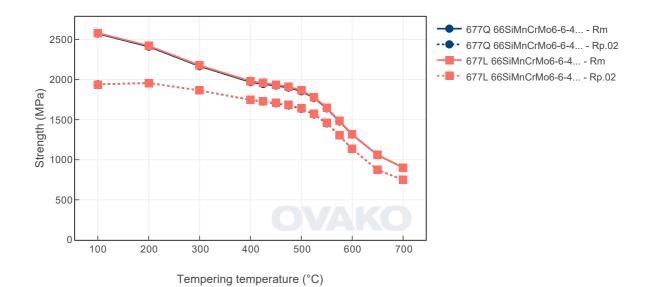
 $Rp_{0.2} * R_{eh}$, ** R_{el}

Transformation temperatures

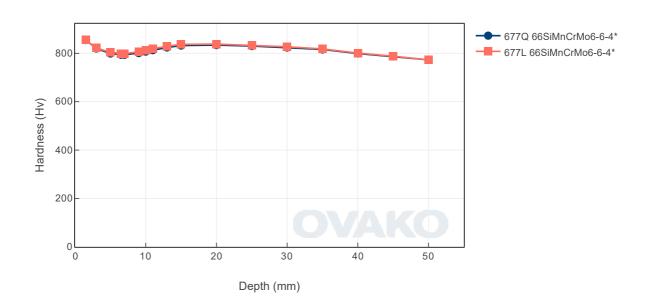
	Temperature °C					
MS	193					
AC1	768					
AC3	792					


Heat treatment recommendations

Treatment Condition		Temperature cycle	Cooling/quenching		
Hot forging +AR		900-1200°C	Slowly or in air		
Soft annealing +SA		775°C / 1h	Slowly to 650°C in 8h		
Hardening +QT		880-1000°C	Directly hardened in air or by gas quenching		
Tempering	+QT	150-710°C	In air		


Heat Treatment Guide generated Graphs

The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

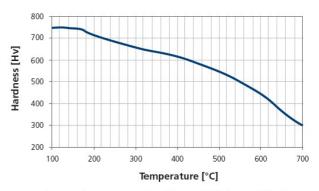

Tempering Diagram (hardness)

Tempering Diagram (strength)

Jominy

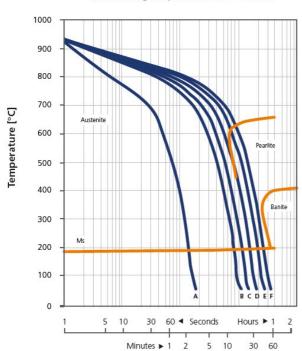
Steel cleanliness

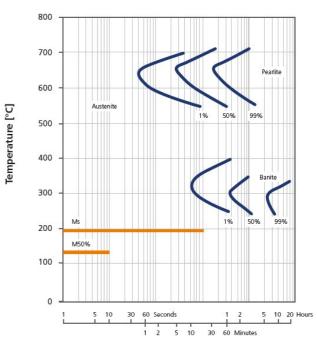
Micro inclusions - BQ								Macro inclusions - BQ			
Applied standard	ASTM 4	ASTM 45						 Applied standard	ISO 3763 (Blue fracture)		
Sampling	ASTM A	ASTM A295							Sampling	Statistical testing on billets	
	A B		В	В С			D				
Maximum average limits	Th	Не	Th	Не	Th	Не	Th	Не	Limits	< 2,5 mm/dm ²	
Ü	2.0	1.5	0.8	0.1	0	0	0.5	0.3			


Micro inclusio	ons - IQ		Macro inclusions - IQ			
Applied standard	DIN 50602 K1		Applied standard	ISO 3763 (Blue fracture)	10 M Hz UST (Ovako internal procedure)	
Sampling	Six random samples from final product dimension		Sampling	Sampling Statistical testing on billets		
Limits	The limit is dimension dependent. The average rating of six samples shoul not exceed the limits given in the graph		Limits	< 1mm /dm ²	<18 defects /dm ³ > 0.2 mm FBH	

IQ

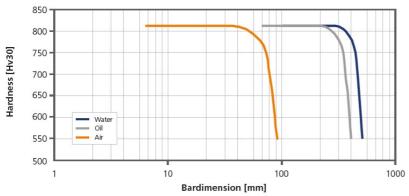
Inclusion limits IQ-processed steel


Tempering response Ovako 677


Tempering response for Ovatec 677. Austenitized at 900°C for 30 min and hardened in air. Tempered one hour at each tested temperature level.

Transformation diagrams

Austenitizing temperature 930°C 10 min


TTTAustenitizing temperature 930°C 10 min

					Е	
t ₈₋₅ [s]:	66	395	536	750	1000	1304
t ₈₋₅ [s]: Hv ₃₀ :	812	812	811	794	827	505

Hardenability

The hardenability describes the steel's ability to form the hard martensite during cooling. It is measured as the steel hardness versus cooling rate or dimension.

Hardenability of Ovatec 677 calculated from CCT measurements and two-dimensional quenching of a bar. Each curve corresponds to different cooling medias.

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the CO_2 emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

Steel works	Hofors	Smedjebacken	Imatra	
CO2e/kg	120	62	76	

To get the full picture of our products environmental impact we have to look at all of our CO2 emission

sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format ' ' '			Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)			
677	Round bar	+AR	636	251			
677	Tube,wall	+AR	680	280			

As of 1 January 2022 we use carbon offset for all our scope 1- 2 emissions, so in practice the climate compensated data is the same as the full Scope 3 level.

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)
210	0.3	80	7800
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)
12	460 - 480	40 - 45	0.20 - 0.25

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.