Material data sheet **Steel grade**

46MnVS3 All

General Information

46MnVS3 is a micro-alloyed steel suitable for forging where no further heat-treatment is necessary. SB9850 is treated to give excellent machinability. Two available variants are SB9850 and 382K.

* Designation followed by "*" is not an official EN standard grade but named according to the rules in EN 10027.

Similar designations

SB9850 - S620*, 1.1305

Chemical composition

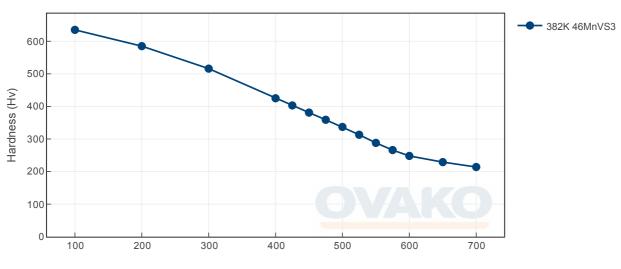
Variant	Cast	Weldability		С%	Si %	Mn %	Р%	s%	Cr%	Ni%	Mo %	٧%	Ti%	Cu%	AI%	N%
SB9850	СС	CEV 0.65 _{max}	Min	0.42	0.15	0.70	-	0.040	-	-	-	0.070	-	-	-	0.0090
3B9030		Pcm 0.55 _{max}	Max	0.46	0.40	1.00	0.035	0.060	0.30	-	0.08	0.200	0.010	-	0.030	0.0200
382K	IC	CEV 0.75 _{max}	Min	0.42	0.25	0.85	-	0.045	0.15	-	1	0.080	-	-	0.015	0.0090
302K	10	Pcm 0.57 _{max}	Max	0.46	0.40	1.00	0.035	0.060	0.25	0.30	1	0.100	-	0.25	0.030	0.0140
46MnVS3 EN 10267:1998 (ref)	Std	CEV 0.71 _{max}	Min	0.42	0.15	0.60	-	0.020	-	-	1	0.080	-	-	-	0.0100
		Pcm 0.56 _{max}	Max	0.49	0.80	1.00	0.025	0.060	0.30	-	0.08	0.200	-	-	-	0.0200

Mechanical Properties

Variant	Condition	Format	Dimension [mm]	Yield strength min [MPa]	Tensile strength [MPa]	Elongation A ₅ [%]	Reduction of area Z _{min} [%]	Hardness
		Round bar	15 < 23	620**	775-890	18	35	235-270 HB
SB9850	+AR	Round bar	24 < 30	580**	775-890	16	-	235-270 HB
209000	TAR	Round bar	31 < 50	560**	775-890	16	-	235-270 HB
		Round bar	51 < 90	540**	775-890	16	-	235-270 HB
46MnVS3 EN 10267:1998 (ref)	+AR	All formats	-	450**	700-900	14	30	-

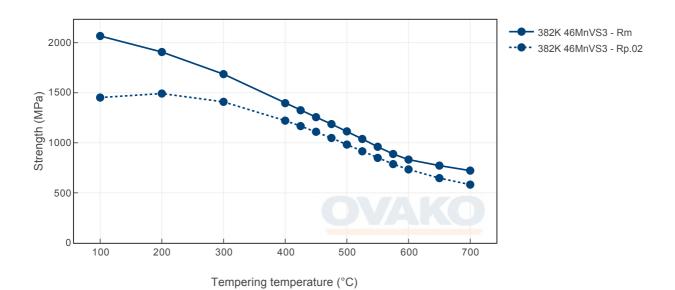
 $Rp_{0.2} * R_{eh}, ** R_{el}$

The limits for 46MnVS3 are valid for bars after controlled cooling. Forging will increase yield and tensile strength and decrease elongation and reduction of area.

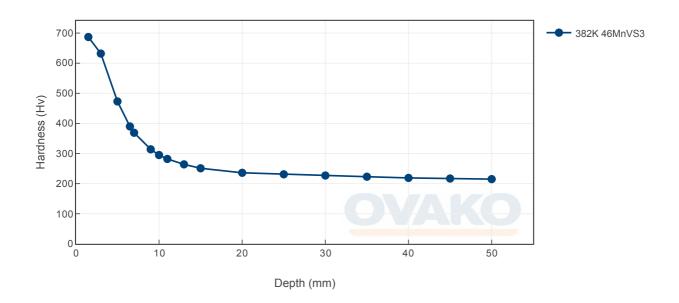

Transformation temperatures

	Temperature °C			
MS	314			
AC1	733			
AC3	794			

Heat Treatment Guide generated Graphs


The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

Tempering Diagram (hardness)



Tempering temperature (°C)

Tempering Diagram (strength)

Jominy

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the CO₂ emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format Condition		Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
382K	Round bar	+AR	587	190
382K	Round bar	+N	592	191
382K	Tube,wall	+AR	602	199
382K	Tube,wall	+N	612	200
SB9850	Flat bar	+AR	501	226

As of 1 January 2022 we use carbon offset for all our scope 1-2 emissions, so in practice the climate compensated data is the same as the full Scope 3 level.

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)	
210	0.3	80	7800	
Average CTE 20-300°C (μm/m°K)	Specific heat capacity 50/100°C (J/kg°K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)	
12	460 - 480	40 - 45	0.20 - 0.25	

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.