Last revised: Thu, 30 Jan 2025 10:29:37 GMT

34CrNiMo6

General Information

34CrNiMo6 is a quenching and tempering steel with high strength, high toughness and good hardenability. Used for large axles, machine components, tools and high strength fasteners.

The steel can be induction hardened and it is weldable under certain conditions. Through hardenability to appr. 100 mm diameter bar with oil quenching.

356D - Standard steel variant

356Q - IQ (isotropic quality) variant.

6499 - low sulphur variant of 34CrNiMo6 Suitable for fasteners according to ISO 898 Grade 10.9 up to 90 mm bar diameter

6498 - A variant of the old swedish standard SS 2541

6502 - M-steel variant of 34CrNiMo6

SB9205 - A variant of 34CrNiMo6

M-Steel®

The basis for the concept is that non-metallic inclusions are modified and controlled with calcium treatment in a way to minimize tool wear and to maximize chip control in machining operations. Our M-Steel treatment can be applied to any steel grade.

Similar designations

34CrNiMo6M, SS2541, MoCN315, MoCN315M, 1.6582, 35NCD6, 816M40, 817M40, 35NiCrMo6, SNCM447, 30Ch2N2MA, F.1272, 40NiCrMo7, 4337, 4340, 92541, VSQT34CrNiMo6, VSQT34CrNiMo6/700, VSQT34CrNiMo6/800, VSQT34CrNiMo6/900, SS2541, EN24, 1.6582, EN 10083-3, SS142541

Chemical composition

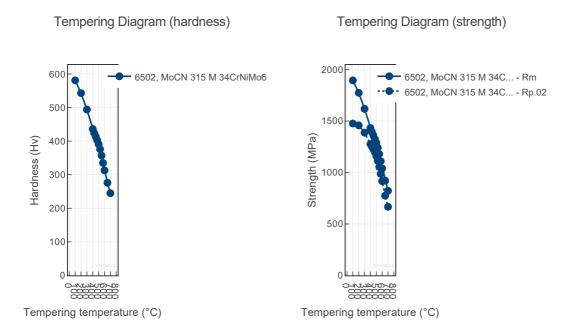
Variant	Cast		C %	Si %	Mn %	Р%	S %	Cr %	Ni %	Mo %
6502. MoCN 315 M	СС	Min	0.30	-	0.50	-	0.015	1.30	1.30	0.15
0302, MOCN 313 W	CC	Max	0.38	0.40	0.80	0.025	0.035	1.70	1.70	0.30

Mechanical Properties

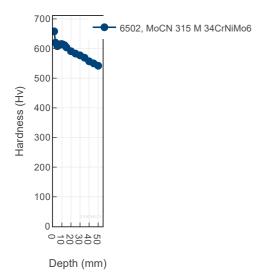
Variant	• Condition	Format	Dimension [mm]	Yield strength min [MPa]	Tensile strength [MPa]	Elongation A ₅ [%]	Reduction of area Z _{min} [%]	Hardness	Impact (ISO-V) strength _{min}
	+AR	Round bar	25 < 160	-	-	-	-	< 380 HB	-
0500	+A	Round bar	25 < 160	-	-	-	-	< 248 HB	-
6502, MoCN 315 M	+QT	Round bar	25 < 40	900*	1100- 1300	10	45	320-380 HB	20 °C 45 J (long)
313 W		Round bar	40 < 100	800*	1000- 1200	11	50	300-350 HB	20 °C 45 J (long)
		Round bar	100 < 160	700*	900- 1100	12	55	270-320 HB	20 °C 45 J (long)

Rp_{0.2} * R_{eh}, ** R_{el}

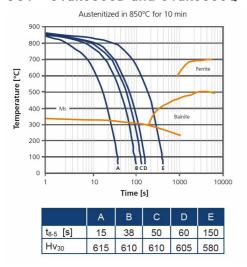
Transformation temperatures

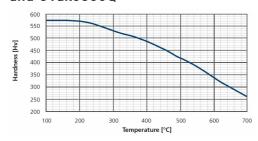

	Temperature °C
MS	315
AC1	725
AC3	785

Heat treatment recommendations


Treatment	Condition	Temperature cycle	Cooling/quenching
Hot forging	+AR	880-1050°C	In air
Soft annealing	+A	650-700°C	Slowly (15°C/h) until 600°C
Stress relieve annealing	+SRA	450-650°C (appr. 50°C under tempering temperature)	In air
Hardening	+Q	820-850°C	Quenching in oil
Tempering	+T	540-680°C	In air

Heat Treatment Guide generated Graphs


The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.


Jominy

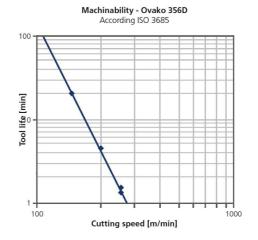
CCT - Ovako356D and Ovako356Q

Tempering response - Ovako356D and Ovako356Q

Steel cleanliness

Micro inclusions - Ovako356D								Macro inclusions - Ovako356D		
Applied standard	AST	M E4	5						Applied standard	ISO 3763 (Blue fracture)
Sampling	AST	M A2	95						Sampling	Statistical testing on billets
Maximum	Α		В		С		D			
average	Th	Не	Th	Не	Th	Не	Th	Не		
limits	2.0	1.5	0.8	0.1	0.1 0 0 0.5 0.4		0.4	Limits	< 5 mm/dm ²	

Steel cleanliness


Micro inclusions	- Ovako356Q		Macro inclusions - Ovako356Q		
Applied standard	DIN 50602 K1				
Sampling	Six random samples from final product dimension		Sampling	Statistical testing on billets	
Limits	The limit is dimension dependent. The average rating of six samples should not exceed the limits given in the graph		Limits	< 10 defects/dm3 > 0,2 mm FBH	

Inclusion limits IQ-processed steel

Machinability

Test condition:	Q&T 310 HV
Test procedure:	ISO 3685
Insert:	SNMA 120408 P15
Tool holder:	CSRNL
Feed rate:	0.4 mm/r
Cutting depth:	2.5 mm
Wear criteria:	vB _{bmean} 0.3mm

Tensile strength at elevated temperatures - Ovako356D

Q&T to 350 HB	RT	100°C	150°C	200°C	
R _{p0,2}	870	810	770	730	MPa
Rm	970	940	920	890	MPa

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our $\rm CO_2$ emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	G Condition	Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
356	Round bar	+AR	860	461
356	Round bar	+QT	866	465
356	Tube,wall	+AR	904	506
356	Tube,wall	+QT	914	514
SB9205	Flat bar	+A	427	204
6499	Round bar	+AR	726	444
6499	Round bar	+QT	1019	532
6502, MoCN 315 M	Round bar	+AR	697	416
6502, MoCN 315 M	Round bar	+QT	985	498
SS 2541 (6498)	Round bar	+AR	710	429
SS 2541 (6498)	Round bar	+QT	1001	514
34CrNiMo6 (6499)	Round bar	+AR	726	444
34CrNiMo6 (6499)	Round bar	+QT	1019	532

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)	
210	0.3	80	7800	
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg°K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)	
12	460 - 480	40 - 45	0.20 - 0.25	

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.