Last revised: Tue, 28 Jan 2025 16:20:38 GMT

28NiCrMnMo14-6-4* All

General Information

Ovako 455 is a high strength quench and tempering steel with good toughness and good dimension stability. Ovako 455 is used in the mining and construction industry.

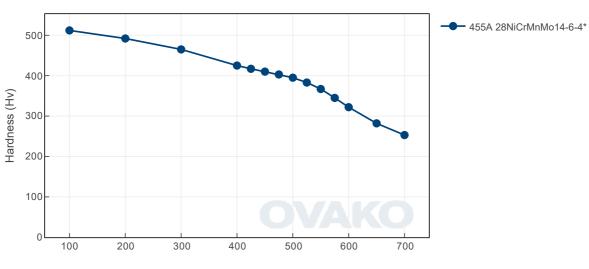
* Designation followed by "*" is not an official EN standard grade but named according to the rules in EN 10027.

Chemical composition

Variant	Cast	Weldability		C %	Si %	Mn %	Р %	s %	Cr %	Ni %	Mo %
455A	IC	CEV 1.21 _{max}	Min	0.24	0.20	0.85	-	-	1.35	3.40	0.30
		Pcm 0.56 _{max}	Max	0.29	0.35	1.05	0.015	0.010	1.75	3.90	0.45

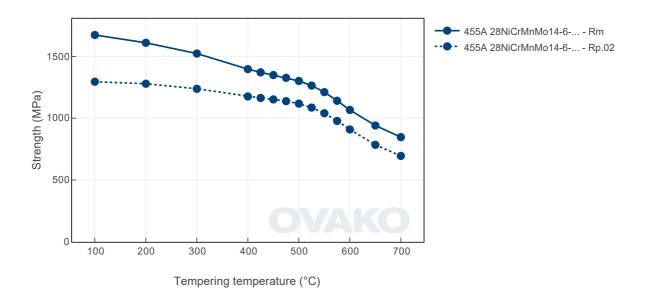
Transformation temperatures

Temperature °C		
AC1	686	
AC3	767	

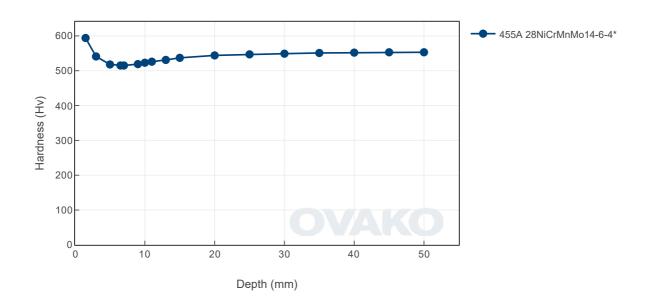

Heat treatment recommendations

Treatment	Condition	Temperature cycle	Cooling/quenching
Hot forging	+AR	850-1100°C	In air
Normalizing	+N	900-950°C	In air
Annealing	+A	650-730°C	In air
Hardening	+Q	840-890°C	In oil
Tempering	+T	160-700°C See tempering diagram	In air

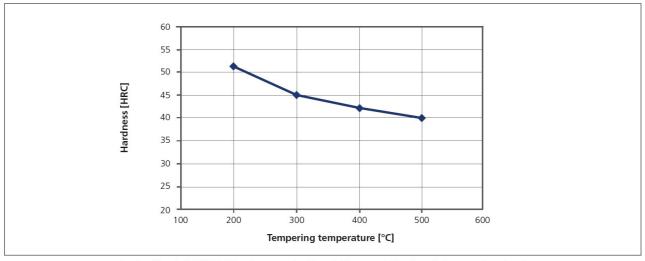
Heat Treatment Guide generated Graphs


The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

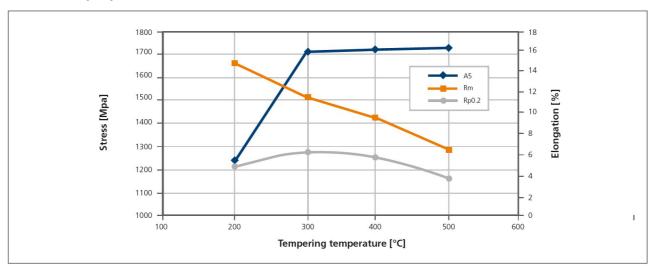
Tempering Diagram (hardness)



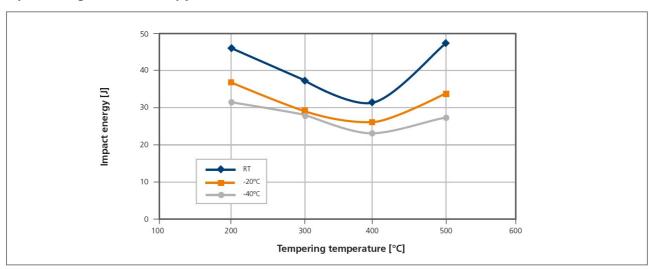
Tempering temperature (°C)


Tempering Diagram (strength)

Jominy



Tempering response - Ovako 455A


Austenitized at 860°C 30 min, quenched in oil. Tempered 1h at each temperature level.

Mechanical properties - Ovako 455A

Austenitized at 860°C 30 min, quenched in oil. Tempered 1h at each temperature level.

Impact toughness (Charpy-V) - Ovako 455A

Austenitized at 860°C 30 min, quenched in oil. Tempered 1h at each temperature level.

Steel cleanliness

Micro inclusions - steel grade Ovako 455A									Macro inclusions - 455A			
Applied standard	AST	И E45								Applied standard	ISO 3763 (Blue fracture)	
Sampling	AST	ASTM A295					Sampling	Statistical testing on billets				
Maximum average	Α	В С		D								
limits	Th	Не	Th	Не	Th	Не	Th	Не		Limits	< 5 mm/dm ²	
IIIIIII	2.5	1.5	1.0	0.5	0	0	0.5	0.5	7			

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works Hofors		Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	_		Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
455A	Round bar	+AR	1224	825
455A	Round bar	+QT	1233	832

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)	
210	0.3	80	7800	
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)	
12	460 - 480	40 - 45	0.20 - 0.25	

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before

using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.