Last revised: Fri, 17 Jan 2025 10:47:31 GMT

25CrMo4 All

General Information

25CrMo4 is a Cr and Mo alloyed quench and tempering steel with low carbon content. The steel combine high strength with high toughness.

- 322A is an ingot cast variant.
- 6014 and 6016 are both M-steel

Delivered as rolled, soft annealed, normalized or quench and tempered. Weldable under certain conditions.

M-Steel®

The basis for the concept is that non-metallic inclusions are modified and controlled with calcium treatment in a way to minimize tool wear and to maximize chip control in machining operations. Our M-Steel treatment can be applied to any steel grade.

Similar designations

SS2225, 4130, 1.7218

Chemical composition

Variant	Cast	Di	Weldability		C %	Si %	Mn %	Р%	S %	Cr %	Mo %
6014, 6016, MoC 210 M	СС	4.1	CEV 0.68 _{max}	Min	0.22	0.05	0.60	0.000	0.015	0.90	0.15
0014, 0010, NIOC 210 NI		4.1	Pcm 0.4 _{max}	Max	0.29	0.40	0.90	0.025	0.035	1.20	0.30

Mechanical Properties

Variant	6 Condition	Format	Dimension [mm]	Yield strength min [MPa]	Tensile strength [MPa]	Elongation A ₅ [%]	Hardness	Impact (ISO- V) strength _{min}
	+AR	Round bar	25 < 160	-	-	-	< 280 HB	-
	+A	Round bar	25 < 160	-	-	-	< 220 HB	-
6014, 6016, MoC 210 M		Round bar	25 < 40	600*	800-950	14	240-280 HB	-20 °C 27 J (long)
	+QT	Round bar	40 < 100	450*	700-850	15	200-250 HB	-20 °C 27 J (long)
		Round bar	100 < 160	400*	650-800	16	190-240 HB	-20 °C 27 J (long)

 $Rp_{0.2} * R_{eh}, ** R_{el}$

Transformation temperatures

Temperature °C					
MS	391				
AC1	746				
AC3	826				

Heat treatment recommendations

Treatment	Condition	Temperature cycle	Cooling/quenching
Hot forging	+AR	850-1100°C	In still air
Normalizing	+N	840-880°C	In still air
Soft annealing	+A	700-730°C / 3h	In still air
Stress relieve annealing	+SRA	525-620°C	In still air
Hardening	+QT	840-870°C	In oil Temper immediately
Hardening	+QT	820-850°C	In water Temper immediately
Induction or Flame hardening	I-F	850-900°C	Water spray Temper immediately
Tempering	+T	550-675°C	

Steel cleanliness

Micro inclusions - steel grade 322A									Macro inclusions - 322A		
											ISO 3763
Applied standard	AST	M E4	5							Applied standard	(Blue fracture)
Sampling	AST	ASTM A295								Sampling	Statistical testing on billets
Maximum	Α	A B C [D				
overege	Th	Не	Th	Не	Th	Не	Th	Не			
limits	2.5	1.5	1.5	0.5	0	0	1.0	0.5		Limits	< 5 mm/dm ²

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	1 Condition	Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
322A	Round bar	+AR	619	220
322A	Round bar	+QT	625	224
322A	Tube,wall	+AR	643	245
322A	Tube,wall	+QT	651	252
9224	Round bar	+AR	464	230
6014, MoC 210 M	Round bar	+AR	525	244
6014, MoC 210 M	Round bar	+QT	779	292

As of 1 January 2022 we use carbon offset for all our scope 1- 2 emissions, so in practice the climate compensated data is the same as the full Scope 3 level.

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)		
210	0.3	80	7800		
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)		
	1		i e		

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.