Last revised: Fri, 17 Jan 2025 10:41:34 GMT

23NiCrMo15-5* All

General Information

23NiCrMo15-5* is a case hardening steel with a high hardenability also suitable for Q&T. It is well suited for demanding

applications where high strength and high toughness is required.

- High hardenability
- · Excellent toughness
- High wear resistance as carburized
- Delivered as rolled, normalized or annealed.

256A With a reduced controlled sulphur content to reduce the number of sulphide inclusions but ensure consistent machinability (BQ)

256G With a controlled sulphur content to ensure consistent machinability

* Designation followed by "*" is not an official EN standard grade but named according to the rules in EN 10027.

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

Similar designations

24NiCrMo15-5

Chemical composition

Variant	Cast	Weldability		С %	Si %	Mn %	P %	S %	Cr %	Ni %	Mo %
256A	IC	CEV _{max}	Min	0.22	0.20	0.65	-	0.005	1.20	3.60	0.30
		Pcm _{max}	Max	0.25	0.35	0.75	0.020	0.008	1.30	3.90	0.35
256G	IC	CEV 1 _{max}	Min	0.22	0.20	0.65	-	0.015	1.20	3.60	0.30
		Pcm 0.48 _{max}	Max	0.25	0.35	0.75	0.020	0.025	1.30	3.90	0.35

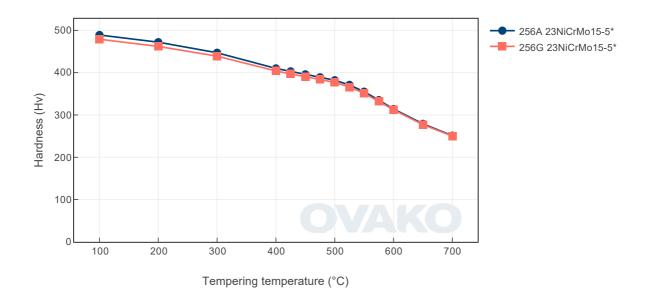
Mechanical Properties

Variant	© Condition	Format	Dimension [mm]	Yield strength min [MPa]	Tensile strength [MPa]	Elongation A ₅ [%]	Reduction of area Z _{min} [%]	Hardness	Impact (ISO-V) strength _{min}
	+AR	Round bar	< 190	710*	1150 typical	11	39	350 HB typical	20 °C 45 J (long)
256G	+A	Round bar	< 190	530*	840 typical	21	62	240 HB typical	-
	+N	Round bar	< 190	940*	1520 typical	12	54	370 HB typical	20 °C 70 J (long)

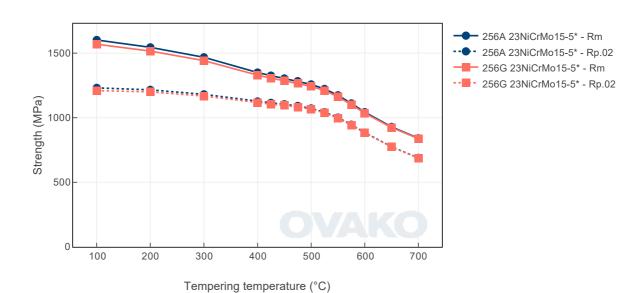
 $Rp_{0.2} * R_{eh}$, ** R_{el}

Transformation temperatures

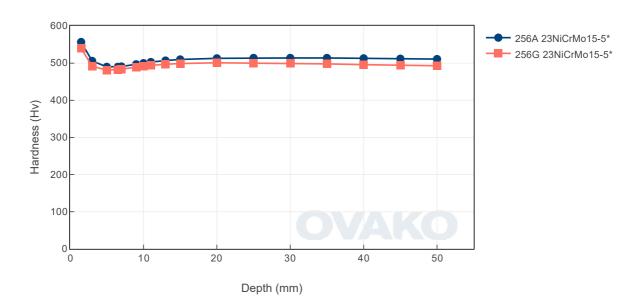
Temperature °C					
AC1	683				
AC3	776				

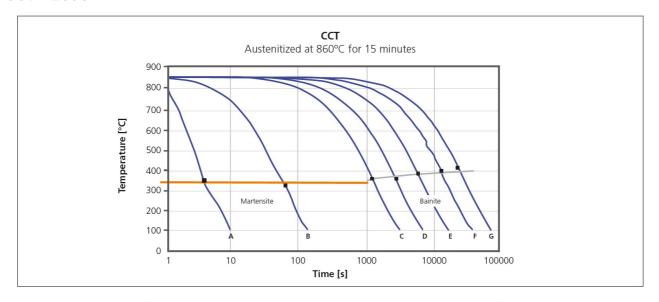

Heat treatment recommendations

Treatment	Condition	Temperature cycle	Cooling/quenching		
Hot forging	+AR	800-1200°C	In air		
Normalizing	+N	850-910°C	In air		
Annealing	+A	600-670°C / 2h	In air		
Carburizing	+C	850-930°C Carbon potential see diagram			
Hardening	+QT	820-890°C Q/T	In oil or air		
Hardening	+QT	800-850°C Hardening of as-carburized component	In oil or air		
Tempering	+T	160-600°C	In air		

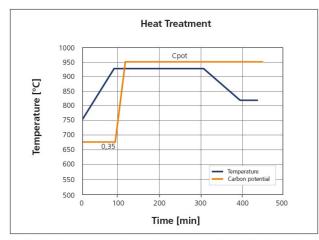

Heat Treatment Guide generated Graphs

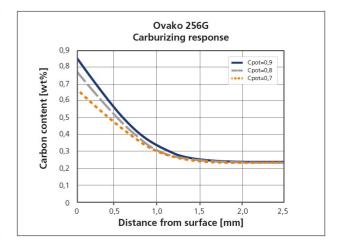
The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.


Tempering Diagram (hardness)

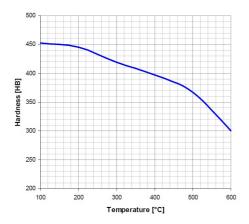


Tempering Diagram (strength)


Jominy



	Α	В	С	D	Е	F	F
t ₈₋₅ [s]	2	28	630	1390	3205	7320	13850
Hv ₃₀	501	476	456	444	416	388	368


Case carburization response - 256G

Carburization response for Ovako 256G for the cycles shown in the figure above.

Tempering response - 256G

Tempering response. Quenched in oil from 860, tempered 1h.

Steel cleanliness

Micro inclusions									Macro inclusions			
Applied standard	AST	ASTM E45								Applied standard	ISO 3763 (Blue fracture)	
Sampling	ASTN	ASTM A295						Sampling	Statistical testing on billets			
Maximum average	А	АВ		С		D						
limits	Th	Не	Th	Не	Th	Не	Th	Не		Limits	< 5 mm/dm ²	
IIIIIII	2,5	1,5	1,0	0,5	0	0	0,5	0,5				

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	_	Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)				
256G	Round bar	+AR	1255	856				
256G	Round bar	+A	1262	861				
256G	Tube,wall	+AR	1333	936				
256G	Tube,wall	+A	1336	938				

All above data are to be seen as typical values for the specified format and condition. Detailed information about your specific product please contact your sales contact.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)		
210	0.3	80	7800		
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)		
12	460 - 480	40 - 45	0.20 - 0.25		

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual

conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.