Material data sheet Steel grade

General Information

20Cr2* is a carburizing steel with good toughness and high fatigue strength. Equivalent to the US Standard grade 4118.

126H is a Bearing Steel Quality (BQ) variant.

* Designation followed by "*" is not an official EN standard grade but named according to the rules in EN 10027.

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

Similar designations

4118H

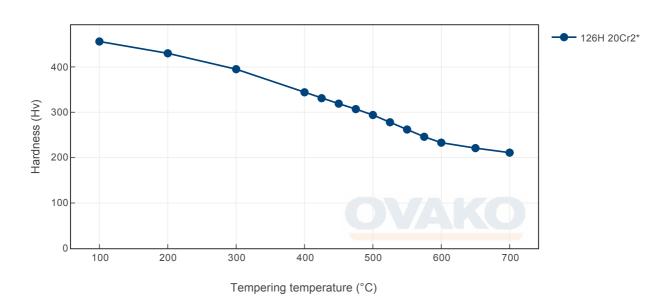
Chemical composition

Variant	Cast	Weldability		C%	Si %	Mn %	Р%	s%	Cr%	Ni %	Mo%	V%
126H	IC	CEV 0.59 _{max}	Min	0.18	0.20	0.70	-	-	0.40	-	0.08	-
		Pcm 0.36 _{max}	Max	0.23	0.35	0.90	0.025	0.015	0.60	0.25	0.15	0.100

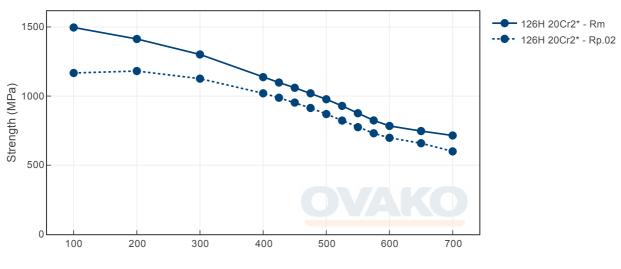
Mechanical Properties

Variant	Condition	Format	Dimension [mm]	Hardness		
126H	+AR	Tube,wall	7 < 23	190 HB typical		

Rp_{0.2} * R_{eh}, ** R_{el}

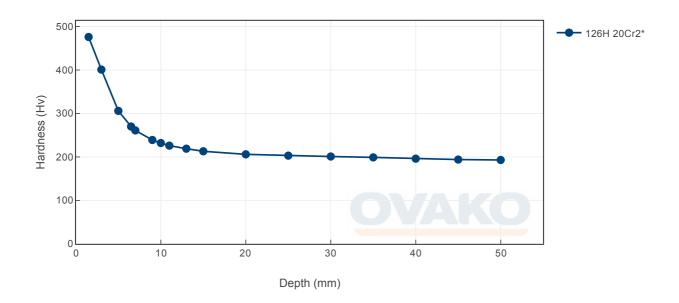

Transformation temperatures

	Temperature °C
MS	421
AC1	730
AC3	818


Heat Treatment Guide generated Graphs

The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

Tempering Diagram (hardness)



Tempering Diagram (strength)

Tempering temperature (°C)

Jominy

Steel cleanliness

Micro inclusions									Macro inclusions			
										ISO 3763		
Applied standard	ASTN	ASTM E45							Applied standard		(Blue fracture)	
Sampling	ASTM A295						Sampling	Statistical testing on billets				
Maximum average	А В			С		D						
limits	Th	Не	Th	Не	Th	Не	Th	Не		Limits	< 2,5 mm/dm ²	
iiiiitə	2,0	1,5	0,8	0,1	0	0	0,5	0,4				

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do. Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the CO_2 emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

Steel works	Hofors	Smedjebacken	Imatra	
CO2e/kg	120	62	76	

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format Scope 1-3 (CO2e kg /1000 kg steel)		. `	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)				
126H	Round bar	+AR	596	203				
126H	Round bar	+SA	601	204				
126H	Tube,wall	+AR	622	221				
126H	Tube,wall	+SA	623	221				

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)
210	0.3	80	7800
Average CTE 20-300°C (μm/m°K)	Specific heat capacity 50/100°C (J/kg°K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)
12	460 - 480	40 - 45	0.20 - 0.25

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.