MATERIAL DATA SHEET STEEL GRADE

Last revised: Thu, 16 Jan 2025 14:12:33 GMT

General Information

16MnCr5 is an alloyed case hardening steel used for e.g. mechanical engineering components. The steel can be M-treated in order to optimize the machinability.

For additional Heat Treatment Data, please visit the Heat Treatment Guide.

Similar designations

16MnCrS5, EN ISO 683-17, 17MnCr5, 1.7131, 1.7139, 1.3521

Chemical composition

Variant	Cast	Weldability		С%	Si %	Mn %	Р%	S %	Cr%	Ni %	Mo %	V %	Cu %
234K	IC	CEV 0.69 _{max}	Min	0.14	0.15	1.05	-	0.015	0.85	-	-	-	-
		Pcm 0.36 _{max}	Max	0.19	0.35	1.30	0.020	0.025	1.10	0.20	0.10	0.100	0.20
En ISO 683-3	Std	CEV _{max}	Min	0.14	0.15	1.00	-	-	0.80	-	-	-	-
		Pcm _{max}	Max	0.19	0.40	1.30	0.025	0.035	1.10	-	-	-	0.40

Mechanical Properties

Variant	G Condition	Format	Dimension [mm]	Hardness
	+U	All formats	24 < 190	230 HB typical
234K	+A	All formats	24 < 190	207 HB typical
	+FP	All formats	24 < 190	140-187 HB

Rp_{0.2} * R_{eh}, ** R_{el}

Transformation temperatures

Temperature °C					
MS	430				
AC1	734				
AC3	827				

Heat treatment recommendations

Treatment	Condition	Temperature cycle	Cooling/quenching
Hot forging +U		850-1200°C	Slow or in air
Soft annealing +A		670-710°C	Slowly (15°C/h) until 600°C
Annealing	+FP	Stage1: 950-1000°C, quickly to stage 2 Stage 2: 620-650°C	Hold for about 3h. Then cool in air
Normalizing +N		860-890°C	In air
Stress relieve annealing +SRA		600-680°C	In air
Carburizing	+C	880-980°C	In air
Quenching +Q		860-900°C	In oil or water
Tempering +T		150-200°C	In air

Heat Treatment Guide generated Graphs

The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

Tempering Diagram (strength)

Jominy

Hardenability

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	-	Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
234K	Round bar	+AR	610	211
234K	Round bar	+SA	615	214
234K	Tube,wall	+AR	630	230
234K	Tube,wall	+SA	632	230
16MnCr5, 4306 (M)	Round bar	+AR	543	239
16MnCr5, 4316	Round bar	+AR	552	250

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Other properties (typical values)

Youngs module (GPa)	Poisson´s ratio (-)	Shear module (GPa)	Density (kg/m3)		
210	0.3	80	7800		
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)		
12	460 - 480	40 - 45	0.20 - 0.25		

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.