Material data sheet **Steel grade**

General Information

Ovako 824 is a through hardening bearing steels intended for rolling contact and other high fatigued applications. In the hardened condition the high hardness, high strength and high cleanliness provides the steel with the right properties to withstand high cycle, high stress fatigue. Ovako 824 is mainly used for small and medium sized bearing components. It is also regularly used for other machine components that require high tensile strength and high hardness. The hardenability approximately corresponds to a ring with maximum 20 mm wall thickness. It is suitable for both martensitic and bainitic hardening. Ovako 824 comes in two variants. One Bearing Quality (BQ) variant that fulfills tough Ovako internal quality demands and consequently also the ISO 683-17 demands. One Isotropic Quality (IQ) with higher demands regarding micro inclusion cleanliness and improved isotropic properties. Additionally this variant has a slightly reduced carbon content to reduce the carbide segregation tendency. The IQ variant is especially suited for applications subjected to a complex loading mode.

824B - Bearing quality (BQ) variant

824P - Bearing quality (BQ) variant with low sulphur content

824Q - Isotropic quality (IQ) variant

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

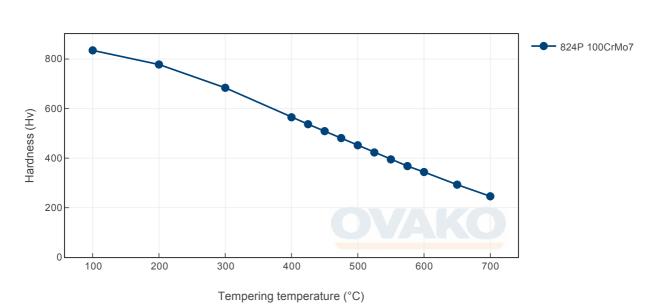
Similar designations

100CD7, ASTM A485 grade 3, 1.3537

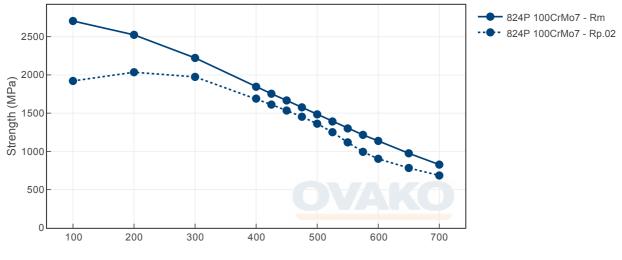
Chemical composition

Variant	Cast		C%	Si %	Mn %	Р%	S%	Cr %	Ni %	Mo %
824P IC		Min	0.93	0.25	0.30	-	0.003	1.80	-	0.15
	Max	0.98	0.35	0.40	0.025	0.008	1.95	0.25	0.25	

Transformation temperatures

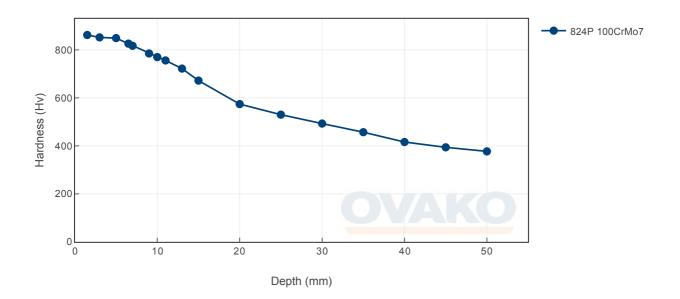

	Temperature °C
MS	186
AC1	750
AC3	750

Heat treatment recommendations


Treatment	Gondition	Temperature cycle	Cooling/quenching
Hot forging	+U	800-1100C	In air
Soft annealing	+SA	RT-820C 1h 820C 2h 820-740C 1h 740-690C 12h	In air
Stress relieve annealing	+SRA	550-650C 1h	In air
Q/T (martensite)	+Q/T(m)	830-870C 10-60 min	In oil. Temper within 2h
Q/T (bainite)	+Q/T(b)	850-875C 10-60 min	Salt bath 220-250C 3-8h
Tempering	+T	160-500C	In air

Heat Treatment Guide generated Graphs

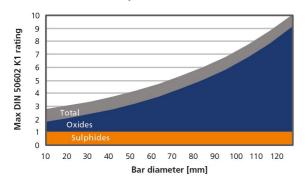
The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.



Tempering Diagram (hardness)

Tempering temperature (°C)

Jominy


Austenitized in 850°C for 10 minutes 900 800 700 Temperature [°C] 600 Ferrite 500 Pear 400 300 200 Ms 100 0 10 100 1000 Time (s) в С D A E
 15
 38
 50
 60
 150

 880
 730
 680
 560
 420
t₈₋₅ [s] Hv₃₀

Steel cleanliness

Micro inclusions - Ovako 824B + 824P							Macro inclusions - 824	B + 824P			
Applied standard	ASTM E	ASTM E45							Applied standard	ISO 3763 (Blue fracture)	
Sampling	ASTM A	ASTM A295							Sampling	Statistical testing on billets.	
Maximum	АВ				C D						
average	Th	He	Th	Не	Th	Не	Th	Не	Limits	< 2,5 mm/dm ²	
limits	2,0	1,5	0,8	0,1	0	0	0,5	0,3			

Micro inclusions - IQ			Macro inclusions - IQ			
Applied standard	DIN 50602 K1		Applied standard	ISO 3763 (Blue fracture)	10 M Hz UST (Ovako internal procedure)	
Sampling	Six random samples from final product dimension		Sampling	Statistical testing on billets		
Limits	The limit is dimension dependent. The average rating of six samples should not exceed the limits given in the graph		Limits	< 1 mm/dm ²	< 5 defects/dm ³	

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do. Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the CO₂ emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

Steel works	Hofors	Smedjebacken	Imatra	
CO2e/kg	120	62	76	

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format			Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
824	Round bar	+SA	608	212
824	Tube,wall	+SA	632	230

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)
210	0.3	80	7800
Average CTE 20-300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg°K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)
12	460 - 480	40 - 45	0.20 - 0.25

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a

IQ

Inclusion limits IQ-processed steel

warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.