

100CrMo7-4 All

General Information

Ovako 826 is a through hardening bearing steel that is mainly used for medium sized bearing rings, but it can also be used for machine components that require high tensile strength, hardness and toughness.

826B - Bearing quality (BQ) variant

- Through hardenability corresponding to a ring with approximately 50mm wall thickness (ů80mm bar), quenched in oil
- · Suitable for martensitic or banitic hardening
- · Good machinability in soft annealed condition
- · Good dimensional stability

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

Similar designations

ASTM A485 grade B7, 1.3538

Chemical composition

Variant	Cast		C%	Si %	Mn %	Р%	s%	Cr%	Ni %	Mo%
826B	IC	Min	0.93	0.25	0.60	-	0.005	1.65	-	0.40
020B		Max	1.05	0.35	0.80	0.025	0.015	1.95	0.25	0.50
EN ISO 683-17	Std	Min	0.93	0.15	0.60	-	-	1.65	-	0.40
		Max	1.05	0.35	0.80	0.025	0.015	1.95	-	0.50

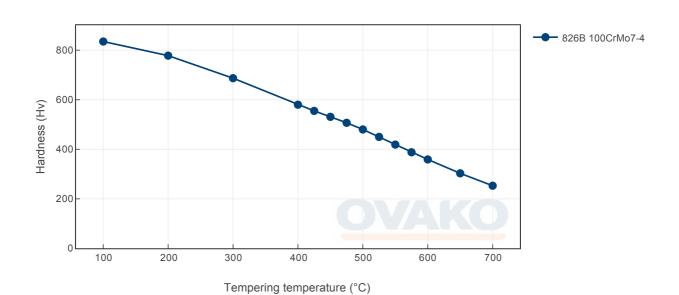
Mechanical Properties

Variant	6 Condition	Format Dimension [mm] Yield strength min [MPa]		Yield strength min [MPa]	Tensile strength [MPa]	Hardness
	+SA	All formats	30 < 190	-	-	180-220 HB
826B	+Q/T(m)	Ring, wall	< 50	1700	2300 typical	61 HRC typical
	+Q/T(b)	Ring, wall	< 50	2000	2200 typical	59 HRC typical

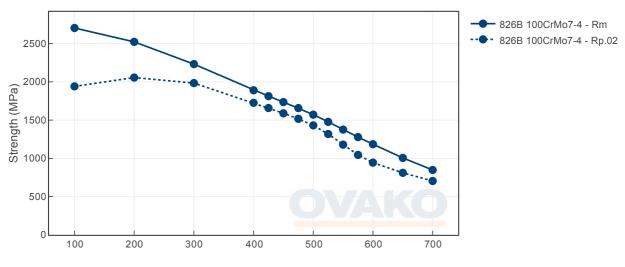
Rp_{0.2} * R_{eh}, ** R_{el}

Transformation temperatures

	Temperature °C
MS	233
AC1	750
AC3	750

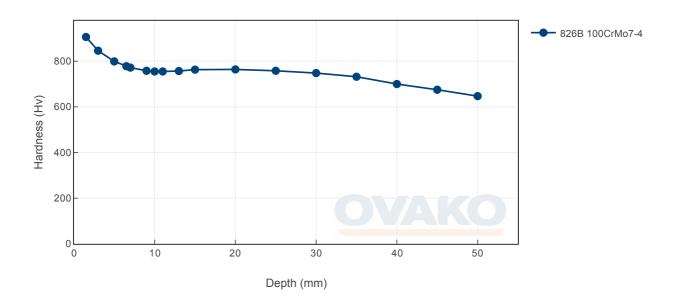

Heat treatment recommendations

Treatment	© Condition	Temperature cycle	Cooling/quenching
Hot forging	+U	800-1100C	In air
Normalizing	+N	880-910C	In air
Soft annealing	+SA	*Normalizing is recommended prior to Soft Annealing, RT-820C 1-2h, 820C 2-5h, 820-740C 1h, 740-690C 12h,	In air
Stress relieve annealing	+SRA	550-650C 2h	In air
Q/T (martensite)	+Q/T(m)	830-880C 20-60min	In oil (temper within 2h)
Q/T (bainite)	+Q/T(b)	850-880C 20-60min	Salt bath
Tempering	+T	160-500C	In air

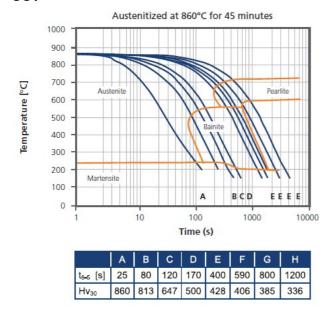

Heat Treatment Guide generated Graphs

The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

Tempering Diagram (hardness)



Tempering Diagram (strength)



Tempering temperature (°C)

Jominy

CCT

Steel cleanliness

Micro inclusions - Ovako 826B								Macro inclusio	ons - Ovako 826B		
Applied standard	ASTM	ASTM E45							Applied standard	ISO 3763 (Blue fracture)	
Sampling	ASTM	ASTM A295							Sampling	Statistical testing on billets.	
Maximum	А	A B C D									
avaraga limita	Th	Не	Th	Не	Th	Не	Th	Не	Limits	< 2,5 mm/dm ²	
average limits	2,0	1,5	0,8	0,1	0	0	0,5	0,3			

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do. Further information is found here.

In many international comparisons the crude steel Scope 1-2 emission is a key parameter, ie. the CO_2 emission from the steel works itself.

As of 1 January 2022 we carbon offset all our scope 1 and 2 volume shown below.

Steel works	Hofors	Smedjebacken	Imatra
CO2e/kg	120	62	76

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	© Condition	, , , ,	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)
826B	Round bar	+SA	643	247
826B	Tube,wall	+SA	670	268

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources. Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)
210	0.3	80	7800
Average CTE 20-300°C (μm/m°K)	Specific heat capacity 50/100°C (J/kg°K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)
12	460 - 480	40 - 45	0.20 - 0.25

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.