Last revised: Wed, 15 Jan 2025 16:05:12 GMT

100CrMnSi6-4 All

General Information

Ovako 837 is a through hardening bearing steel that is mainly used for medium sized bearing rings, but can also be used for machine components that require high tensile strength and high hardness.

30 mm maximum wall thickness for through hardening

Used for martensitic hardening

Can be induction hardened

Good machinability in soft annealed condition

Machinable in hardened condition using hard-turning techniques (CBN tools)

Very good dimension stability

837R - Bearing quality (BQ) variant

837S - Variant with a controlled high sulphur content for enhanced low speed machining

5625 / 837Z - A continous cast variant (BQ)

BQ-Steel®

BQ-Steel® is a bearing quality clean steel optimized for fatigue strength and is also ideal for new design solutions outside the bearing industry.

Similar designations

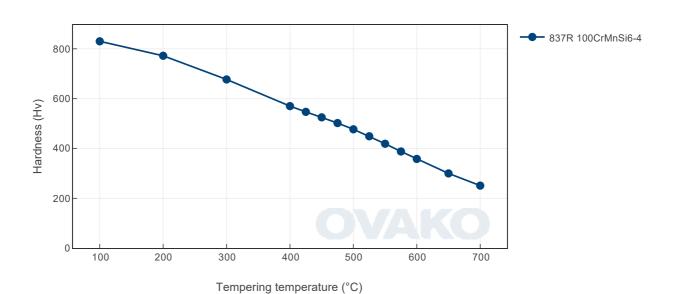
ASTM A485 grade B3, 100 CM 6

Chemical composition

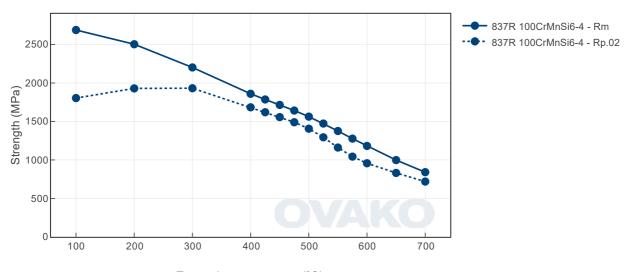
Variant	Cast		С %	Si %	Mn %	P %	s %	Cr %	Ni %	Мо %
837R	IC	Min	0.93	0.50	1.00	-	0.003	1.40	-	-
		Max	0.98	0.70	1.20	0.025	0.006	1.55	0.25	0.10

Transformation temperatures

	Temperature °C
MS	229
AC1	750
AC3	750

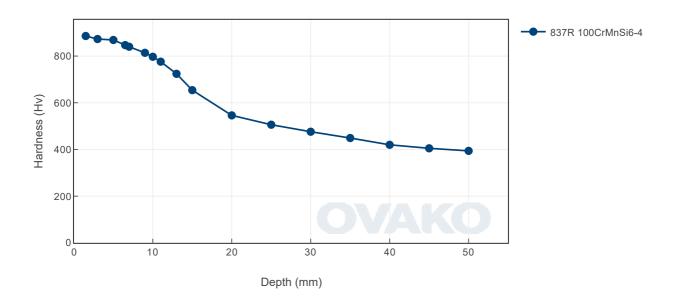

Heat treatment recommendations

Treatment	Condition	Temperature cycle	Cooling/quenching	
Hot forging	+U	800-1100C	In air	
Normalizing	+N	880-910C	In air	
Spheroidize annealing +SA		RT-810°C 1h, 810°C 2h, 810-740°C 1h, 740-650°C 10h	In air	
Stress relieve annealing	+SRA	550-650C 2h	In air	
Q/T (martensite) +Q/T(m)		830-870C 20-60min,	In oil (temper within 2h)	
Tempering	+T	160-500C (see diagram)	In air	

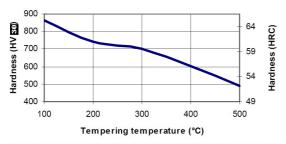

Heat Treatment Guide generated Graphs

The following graphs are generated from a theoretical model. For further info see the Heat treatment guide module. Select a specific grade version for individual display.

Tempering Diagram (hardness)



Tempering Diagram (strength)



Tempering temperature (°C)

Jominy

Tempering response

Tempering response for Ovako 837R. Austenitized at 850°C for 30min and quenched in oil. Tempered one hour at each tested temperature level

Steel cleanliness

Micro inclusions - Ovako 837R								Macro inclusions - Ovako 837R			
Applied standard	ASTI	ASTM E45							Applied standard	ISO 3763 (Blue fracture)	
Sampling	ASTI	ASTM A295							Sampling	Statistical testing on billets	
Maximum average	А В				C D						
limits	Th	Не	Th	Не	Th	Не	Th	Не	Limits	< 2,5 mm/dm ²	
iiiiics	2,0	1,5	0,8	0,1	0	0	0,5	0,3			

SUSTAINABILITY-ENVIRONMENTAL IMPACT DATA

At Ovako sustainability and reduction of our environmental impact is a major focus in everything we do.

Further information is found here.

Steel works	Hofors	Smedjebacken	Imatra	
CO2e/kg	120	62	76	

To get the full picture of our products environmental impact we have to look at all of our CO₂ emission sources

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Steel Grade	Format	_	Scope 1-3 (CO2e kg /1000 kg steel)	Climate compensated Net emission = Scope 3 (CO2e kg /1000 kg steel) Scope 1 - 2 = 0 (compensated)			
837	Round bar	+SA	628	227			
837	Tube,wall	+SA	650	253			
5625 / 837Z	Round bar	+SA	572	269			

To get the full picture of our products environmental impact we have to look at all of our CO_2 emission sources.

Not only the steel work Scope 1-2 itself, but all operations downstream in our production, heating and heat treatment furnaces etc (full scope 1-2) as well as all the emission from input material, eg. alloys, scope 3.

Other properties (typical values)

Youngs module (GPa)	Poisson's ratio (-)	Shear module (GPa)	Density (kg/m3)	
210	0.3	80	7800	
Average CTE 20- 300°C (µm/m°K)	Specific heat capacity 50/100°C (J/kg °K)	Thermal conductivity Ambient temperature (W/m°K)	Electrical resistivityAmbient temperature (μΩm)	
12	460 - 480	40 - 45	0.20 - 0.25	

Contact us

Would you like to know more about our offers? Don't hesitate to contact us:

Via e-mail: info@ovako.com

Via telephone: +46 8 622 1300

For more detailed information please visit http://www.ovako.com/en/Contact-Ovako/

Disclaimer

The information in this document is for illustrative purposes only. The data and examples are only general recommendations and not a warranty or a guarantee. The suitability of a product for a specific application can be confirmed only by Ovako once given the actual conditions. The purchaser of an Ovako product has the responsibility to ascertain and control the applicability of the products before using them. Continuous development may necessitate changes in technical data without notice. This document is only valid for Ovako material. Other material, covering the same international specifications, does not necessarily comply with the properties presented in this document.